What is Strange in Large Networks? Graph-based Irregularity and Fraud Detection

Leman Akoglu

Christos Faloutsos

IEEE International Conference on Data Mining CDM Brussels 10-13 Dec 2012

Outliers vs. Graph anomalies

This tutorial

Clouds of points (multi-dimensional)

Inter-linked objects (network)

Roadmap

- 13:30 Introduction & motivation Part I: Anomaly detection
 - in static data
- 15:30 **Coffee break**
- 16:00 Part II: Anomaly detection in dynamic data
 - Part III: Graph-based algorithms & applications
 - 18:00 The End

Disclaimers

This tutorial does not necessarily cover all related work

References are not necessarily authoritative and complete

Several slides have been reused or modified by the permission of the original creators.

Anomaly detection: Applications

Tax evasion

Healthcare fraud

Credit card fraud

Network intrusion

Applications

Anomaly detection: definition

(Hawkins' Definition of Outlier, 1980)

"An outlier is an observation that differs so much from other observations as to arouse suspicion that it was generated by a different mechanism."

No unique definition definition definition definition definition definition definition definition definitions in various contexts

outlier, anomaly, outbreak, event, fraud, ...

Anomaly detection: definition

for practical purposes,

a record/point/graph-node/graph-edge

is flagged as anomalous

if a rarity/likelihood/outlierness score exceeds a user-defined threshold

anomalies:

- □ → rare (e.g., rare combination of categorical attribute values)
- ightarrow
 ightarrow isolated points in n-d spaces

□ → surprising (don't fit well in our mental/statistical model == need too many bits under MDL)

Why graph-based detection?

Powerful representation

- Interdependent instances
- Long-range relations
- Node/Edge attributes (data complexity)
- Hard to fake/alter (adversarial robustness)
- Abundant relational data
 Web, email, phone call, ...

Real graphs (1)

Problem revisited for graphs

- Three different problem settings
 - Unlabeled/Labeled (Attributed) Graphs
 - Static/Dynamic Graphs
 - Un-/Semi-/- Supervised Graph Techniques

Taxonomy **Graph Anomaly Detection** Dynamic graphs Graph algorithms Static graphs Plain Learning Inference Plain Attributed models **Distance** based Iterative classification **RMNs** Feature-distance Feature based Structure based Belief **PRMs** Structure distance propagation Structural features Substructures **RDNs** Relational netw. **Recursive features** Subgraphs classification **MLNs** Structure based "phase transition" Community Community based based

Goal of this tutorial

- Introduce various problem formulations
 - Definitions change by application/representation
- Applications of problem settings
 - Intrusion, fraud, spam
- Introduce existing techniques
 - Model fitting, factorization, relational inference
- Pros and Cons
 - Parameters, scalability, robustness

Tutorial Outline

- Motivation, applications, challenges
- Part I: Anomaly detection in static data
 - Overview: Outliers in clouds of points
 - Anomaly detection in graph data

Part II: Event detection in dynamic data

- Overview: Change detection in time series
- Event detection in graph sequences
- Part III: Graph-based algorithms and apps
 - Algorithms: relational learning
 - Applications: fraud and spam detection

Part I: Anomaly detection in static graphs

Part I: Outline

- Overview: Outliers in clouds of points
 - Outliers in numerical data points
 - distance-based, density-based, ...
 - Outliers in categorical data points
 - model-based
 - Anomaly detection in graph data
 - Anomalies in unlabeled, plain graphs
 - Anomalies in node-/edge-labeled, attributed graphs

Outlier detection

- Anomalies in multi-dimensional data points
 - Density-based
 - Distance-based
 - Depth-based
 - Distribution-based
 - Clustering-based
 - Classification-based
 - Information theory-based
 - Spectrum-based

No relational links between points

16

14

12[.] 10

8

Part I: References (outliers)

- M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. <u>LOF</u>: <u>Identifying density-based local outliers</u>. SIGMOD, 2000.
- S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. <u>LOCI: Fast outlier detection using the local</u> <u>correlation integral</u>. ICDE, 2003.
- C. C. Aggarwal and P. S. Yu. <u>Outlier detection for high</u> <u>dimensional data</u>. SIGMOD, 2001.
- A. Ghoting, S. Parthasarathy and M. Otey, <u>Fast Mining of</u> <u>Distance Based Outliers in High-Dimensional Datasets</u>. DAMI, 2008.
- Y. Wang, S. Parthasarathy and S. Tatikonda, <u>Locality</u> <u>Sensitive Outlier Detection</u>. ICDE, 2011.
- Kaustav Das, Jeff Schneider. <u>Detecting Anomalous</u> <u>Records in Categorical Datasets</u>. KDD 2007.

Part I: References (outliers)

- Müller E., Schiffer M., Seidl T. <u>Adaptive Outlierness for</u> <u>Subspace Outlier Ranking</u>. CIKM, 2010.
- Müller E., Assent I., Iglesias P., Mülle Y., Böhm K.
 <u>Outlier Ranking via Subspace Analysis in Multiple Views</u> of the Data. ICDM, 2012.
- L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos. <u>Fast</u> and <u>Reliable Anomaly Detection in Categoric Data</u>. CIKM, 2012.
- A. Chaudhary, A. S. Szalay, and A. W. Moore. <u>Very fast</u> outlier detection in large multidimensional data sets. DMKD, 2002.
- Survey: V. Chandola, A. Banerjee, V. Kumar: <u>Anomaly</u> <u>Detection: A Survey</u>. ACM Computing Surveys, Vol. 41(3), Article 15, July 2009.

Part I: Outline

- Overview: Outliers in clouds of points
 - Outliers in numerical data points
 - distance-based, density-based, ...
 - Outliers in categorical data points
 - model-based
- Anomaly detection in graph data
 - Anomalies in unlabeled, plain graphs
 - Anomalies in node-/edge-labeled, attributed graphs

Taxonomy **Graph Anomaly Detection** Dynamic graphs Graph algorithms Static graphs Plain Learning Inference Plain Attributed models **Distance** based Iterative classification **RMNs** Feature-distance Structure based Feature based Belief **PRMs** Structure distance propagation Structural features Substructures **RDNs** Relational netw. **Recursive features** Subgraphs classification **MLNs** Structure based "phase transition" Community Community based based

Akoglu et al. '10

Anomalies in Weighted Graphs

Problem:

Q1. Given a **weighted** and unlabeled graph, how can we spot strange, abnormal, extreme nodes?

Q2. Can we explain why the spotted nodes are anomalous?

Problem sketch

OddBall: approach

1) For each node,

- 1.1) Extract "ego-net" (=1-step neighborhood)
- 1.2) Extract features (#edges, total weight, etc.)
 - → features that could yield "laws"
 - → features fast to compute and interpret
- 2) Detect patterns:
 - \rightarrow regularities
- 3) Detect anomalies:
 - \rightarrow "distance" to patterns

What is odd?

Which features to compute?

- N_i: number of neighbors (degree) of ego i
- E_i: number of edges in egonet i

- W_i : total weight of egonet *i*
- $\lambda_{w,i}$: principal eigenvalue of the weighted adjacency matrix of egonet *i*

deta Weighted principal eigenvalue 'N = $\Lambda_{w,i}$ $\lambda_{w,i} \sim \sqrt{E}, \sqrt{W}$ $\lambda_{w,i}$ $\lambda_{w,i}$ $\lambda_{w,i}$. Λw,i

N: #neighbors, W: total weight

OddBall: pattern#1

OddBall: pattern#2

OddBall: pattern#3

OddBall: anomaly detection

OddBall: datasets

OddBall at work (Posts)

OddBall at work (FEC)

OddBall at work (DBLP)

Henderson et al. '11

Recursive structural features

- Main idea: recursively combine "local" (nodebased) and neighbor (egonet-based) features
 - Recursive feature: any aggregate computed over any feature (including recursive) value among a node's neighbors

Recursive structural features

Recursive structural features

Neigborhood features

captures node connectivity

Regional features captures "kinds" of neighbors

Recursive structural features

- Capturing regional (behavioral) information in large graphs
- Feature construction linear in graph size
- Aggregates only for numerical features
 Parameters p, s for binning and pruning

 Recursive features proved effective in transfer learning, identity resolution (yet to be studied for anomaly detection)

Anomalies in Bipartite Graphs

Problem:

Q1. Neighborhood formation (NF)

Given a query node q in V₁, what are the relevance scores of all the nodes in V₁ to a ?

Q2. Anomaly detection (AD)

 Given a query node q in V₁, what are the normality scores for nodes in V₂ that link to a ?

Sun et al. '05

Applications of problem setting

- Publication network
 - (similar) authors vs. (unusual) papers
- P2P network
 - (similar) users vs. ("cross-border") files
- Financial trading network
 - (similar) stocks vs. (cross-sector) traders
- Collaborative filtering
 - (similar) users vs. ("cross-border") products

1) Neighborhood formation

Main idea:

- Random-Walk-with Restart from q
- Steady-state V1 prob.s as relevance

(1) Construct transition matrix P
 P(a,b) =
 $\begin{cases}
 \frac{1-c}{\text{outdeg}(a)} & \text{if } (a,b) \in E \\
 0 & \text{if } (a,b) \notin E
 \end{cases}$ (2) Fly-back prob. c to q

(3) Solve for steady state

$$\vec{u_a}^{(t+1)} = P \ \vec{u_a}^{(t)} + c\vec{q}$$

Approx: RWR on graph **partition** containing **q**

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (ICDM'12)

2) Anomaly detection

Main idea:

- Pairwise "normality" scores of neighbors(t)
- Function of (e.g. avg) pair-wise scores
- (1) Find set S of nodes connected to t
- (2) Compute |S|x|S| normality matrix R
 - asymmetric, diagonal reset to 0
- (3) Apply score function f(R)
 - e.g. f(R) = mean(R)

Experiment

- 3 real datasets
 DBLP conf-auth
 DBLP auth-paper
 - IMDB movie-actor

- Randomly inject 100 CA AP nodes, each with k (avg. degree) edges (biased towards high-degree nodes)
- No qualitative results

Graph Anomalies by NNrMF

 Low-rank adjacency matrix factorization of a (sparse) graph reveals communities and anomalies

Low-rank matrices Residual matrix

Adjacency matrix: A

L. Akoglu & C. Faloutsos

Conference

Author

Anomaly detection in graph data (ICDM'12)

Tong+SDM'11 modified with permission

49

R: abnormal connection

Tong et al. '11

Non-negativity constraints

For improved interpretability

51

Optimization formulation

Q: How to find 'optimal' F and G?
 D1: Quality ←→ C1: objective non-convex
 D2: Scalability ←→ C2: large graph size

Optimization: batch

Basic Idea 1: Alternating

 $\mathrm{argmin}_{\mathbf{F},\mathbf{G}} \sum (\mathbf{A}(i,j) - \mathbf{F}(i,:)\mathbf{G}(:,j))^2$

Not convex w.r.t. *F* and *G*, *jointly* But convex if fixing either *F* or *G*

Basic Idea 2: Separation

 $\begin{array}{ll} \operatorname{argmin}_{\boldsymbol{G}} & \sum_{i,j, \ \mathbf{A}(i,j)>0} (\mathbf{A}(i,j) - \mathbf{F}(i,:)\mathbf{G}(:,j))^2 & \operatorname{argmin}_{\boldsymbol{G}} & \sum_{j, \ \mathbf{A}(i,j)>0} (\mathbf{A}(i,j) - \mathbf{F}(i,:)\mathbf{G}(:,j))^2 \\ \text{for all } \mathbf{A}(i,j) > 0: \\ \mathbf{F}(i,:)\mathbf{G}(:,j) \leq \mathbf{A}(i,j) & \text{For each} \end{array}$

Standard Quadratic Programming

Overall Complexity: Polynomial

Overall Complexity: Linear wrt # of edges

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (ICDM'12)

Tong+SDM'1153modified with permission

Experiments

NNrMF can spot 4 types of anomalies

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (ICDM'12)

Tong+SDM'1154modified with permission

Experiments

4 real datasets, with injected anomalies

Effectiveness Accuracy

Efficiency Wall-clock Time

55

Ding et al. '12 Intrusion as (Anti)social Communication

- Problem:
- Q. How to detect malicious

attacks in computer networks?

Main insight for intrusion:

- entering a community to which one doesn't belong
- Iook for communication that does not respect community boundaries

Problem formulation

Network representation as a bipartite graph

- Source and destination IPs may overlap
- One mode projection GP: connect two source IPs with at least 1 common neighbor
- Alternative Gw: weigh by correlation coefficient

Intrusion data with ground truth

- Data: netflow traffic
 - from a large European ISP
 - 2 weeks data in 2007: source IP, dest IP, start/end time, number of bytes/packets sent
 - Ground truth: traffic sources that attempted an intrusion as recorded by Dshield*
 - known IPs sending malicious or unwanted traffic

Detection methods

Community detection: Standard community detection methods fail to distinguish known IPs from communities
 Size of Cluster # of Clusters # of DShields

Cut-vertices:

Size of Cluster	# of Clusters	# of DShields
6784	1	158
986	1	1
8 to 243	10	0
≤ 7	56	2
Total	68	161

Iteratively remove cut-vertices

6.6% of cut-vertices are Dshields (randomization yields significance; (1-2.2%) at 0.05)

→ Clustering and betweenness deemed discriminative

Experiments

 Malicious if clustering/betweenness below/above threshold

	Mean(AUC)	SE(AUC)
Clustering on <i>G</i> _P	0.7440	0.0103
Betweenness on G_P	0.7180	0.0084
Clustering on G_W	0.7625	0.0080
Betweenness on G_W	0.5621	0.0034

- Clustering gives better discrimination
- Gw does not provide much improvement over GP

Part I: References (plain graphs)

- L. Akoglu, M. McGlohon, C. Faloutsos. <u>OddBall: Spotting</u> <u>Anomalies in Weighted Graphs</u>. PAKDD, 2010.
 K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, C. Faloutsos. <u>It's Who You Know: Graph Mining</u> <u>Using Recursive Structural Features</u>. KDD, 2011.
 J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. <u>Neighborhood formation and anomaly detection in bipartite</u> <u>graphs</u>. ICDM, 2005.
 - Hanghang Tong, Ching-Yung Lin: <u>Non-Negative Residual</u> <u>Matrix Factorization with Application to Graph Anomaly</u> <u>Detection</u>. SDM, pages 143-153, 2011.
 - Q. Ding, N. Katenka, P. Barford, E. Kolaczyk, and M. Crovella. Intrusion as (Anti)social Communication: Characterization and Detection. KDD, 2012.

mining

Feature

Community mining

Part I: Outline

- Overview: Outliers in clouds of points
 - Outliers in numerical data points
 - distance-based, density-based, ...
 - Outliers in categorical data points
 - model-based
- Anomaly detection in graph data
 Anomalies in unlabeled, plain graphs
 - Anomalies in node-/edge-labeled, attributed graphs

Anomalies in labeled graphs

Problem:

Q1. Given a graph in which nodes and edges contain (non-unique) labels, what are unusual substructures?

Q2. Given a set of subgraphs, what are the unusual subgraphs?

Note: assumption is anomalies are connected

Background

- Subdue*: An algorithm for detecting repetitive patterns (substructures) within graphs.
- Substructure: A connected subgraph of the overall graph.
- Compressing a graph: Replacing each instance of the substructure with a new vertex representing that substructure.
- Description Length (DL): Number of bits needed to encode a piece of data

^{*} http://ailab.wsu.edu/subdue/

Background

Subdue uses the following heuristic:

- The best substructure is the one that minimizes
 F1(S,G) = DL(G | S) + DL(S)
 - G: Entire graph, S: The substructure,
 - DL(G|S) is the DL of G after compressing it using S,
 - DL(S) is the description length of the substructure.

Iterations after compressing at each step

Background

Given database D and set of models for D, Minimum Description Length selects model M that minimizes

<u>L(M)</u> +

 $a_9 x^9 + ... + a_1 x + a_0$

VS.

 a_1x+a_0

deltas

1) Anomalous Substructures

- Main idea: anomalies (by def.) occur infrequently, they are roughly opposite to "best substructures"
 - Find substructures S that maximize F1(S,G)?
 - Nope, it flags all single nodes as anomalies!
 - Instead, find those that minimize

F2(S, G) = Size(S) * Instances(S,G)

Approximate inverse of F1(S,G)

Intuition: Larger substructures are <u>expected</u> to occur few times; the smaller the substructure, the less likely it is rare

Example

F2(S, G) = Size(S) * Instances(S,G)

- □ For node D, F2 = 1 * 1 = 1
- For A→C and D→A, it is 2 * 1 = 2
- For G (whole graph), it is 9 * 1 = 9
- Hence D is considered the most anomalous.

 Note: Usually a threshold for F2 is used and anomalies are ranked by their scores.

2) Anomalous Subgraphs

- Main idea: subgraphs containing few common substructures are generally more anomalous
 - Define compressibility score A in [0,1]

Experiments

- Data: 1999 KDD Cup Network Intrusion (
 - Ground truth: connection records, "normal" or attack (37 types), 41 features of connection (duration, protocol type, number of bytes, etc.)
 - Each individual test involved 50 records of which only one is of a particular attack type.
- Use Subdue to find anomalous substructures
 Prune all subgraphs with size>3, F2>6 (arbitrary)

Performance

Note: Degree of anomaly D(S): 1/F2

- Attack accounts for D(S1) / (Sum [D(Si)]
- e.g., if F2 = (2, 3, 4) for (S1, S2, S3) and S2 occurs in the attack, then attack accounts for (1/3) / (1/2 + 1/3 + 1/4) = 4/13 of discovered anomalies
Anomalies with numeric labels

- How about numeric labels?
 - Noble & Cook work with categorical labels
 - (1) unusual substructures

Davis et al. '11

Anomalies with numeric labels

- How about numeric labels?
 - Noble & Cook work with categorical labels

Anomalies with numeric labels

- Main idea (discretization):
 - assign categoric label q_0 to "normal" values, and
 - "outlierness" score q_i to all others i
- Example: empirical distribution of a label

 Several "outlierness" scores (pdf-fitting, kNN, LOF, clustering-based)

Discretization

kNN distance

distance to closest "large" (k-means) cluster centroid

Discretization

- Other possible discretization techniques
 - SAX (Symbolic Aggregate approXimation)
 - <u>http://www.cs.ucr.edu/~eamonn/SAX.htm</u>
 - MDL-binning
 - P. Kontkanen and P. Myllymäki. MDL histogram density estimation. In AISTAT, 2007.
 - Minimum entropy discretization
 - U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In Proc. IJCAI, pages 800–805, 1989.
 - Logarithmic binning
 - especially for skewed distributions

Experiment

Data: Access card transaction graphs

node: door sensor, edge (u,w): movement u→w, weight(u,w): time u→w (only numeric attribute)

Eberle and Holder. '07

Anomalies in labeled graphs

Problem:

Q1. Given a graph in which nodes and edges contain (non-unique) labels, how to find substructures that are very similar to, though not the same as, a normative substructure? ("best substructure" as for Subdue)*

Intuition:

"The more successful money-laundering apparatus is in imitating the patterns and behavior of legitimate transactions, the less the likelihood of it being exposed."

- United Nations Office on Drugs and Crime

Formal definition

Given graph G with a normative substructure S, a substructure S' is anomalous if difference d between S and S' satisfies 0 < d <= X, where X is a (user-defined) threshold and d is a measure of the unexpected structural difference.

Assumptions

- Majority of G consists of a normative pattern, and no more than X% of it is altered in an anomaly.
- Anomalies consist of one or more modifications, insertions or deletions.
- Normative pattern is connected.

Three Types of Anomalies

- 1) GBAD-MDL (Minimum Descriptive Length): anomalous modifications
- 2) GBAD-P (Probability): anomalous insertions
- 3) GBAD-MPS (Maximum Partial Substructure): anomalous deletions

Note: prone to miss more than one type of anomaly • e.g., a deletion followed by modification

1) Information Theoretic Approach

- Find normative substructure S that minimizes
 F(S,G) = DL(G | S) + DL(S)
- For each instance I_k of S

anomalyScore(I_k) = freq(I_k) * matchcost(I_k ,S) cost to modify I_k into S

Example:

2) Probabilistic Approach

- Find normative substructure S
- Find extensions to **S** with lowest probability
- For each extension I_k of S

anomalyScore(I_k) = $\frac{\text{number of instances of } I_k}{\text{all instances } I_n \text{ with a unique extension}}$

Example:

3) Maximum Partial Substructure Approach

- Find normative substructure S
- Find "ancestral" substructures $S_n \subseteq S$ that are missing various edges and vertices.
- For each instance I_k of S_n

anomalyScore(I_k) = $|I_n| * \text{matchcost}(I_k,S)$ # instances of I_k

Example:

Experiments (Cargo shipments)

 Data: obtained from Customs and Borders Protection (CBP)

Scenario:

- Marijuana seized at Florida port [press release by U.S. Customs Service, 2000].
- Smuggler did not disclose some financial information, and ship traversed extra port.
- GBAD-P discovers the extra traversed port;
- GBAD-MPS discovers the missing financial info.

Experiments (Network intrusion)

Data: 1999 KDD Cup Network Intrusion

- 100% of attacks were discovered with GBAD-MDL
- 55.8% for GBAD-P and 47.8% for GBAD-MPS

Note

- Data consists of TCP packets that have fixed size
- Thus, the inclusion of additional structure, or the removal of structure, is not relevant here.
- Modification is the only relevant one, at which GBAD-MDL performs well

High (unreported) false positive rate!

Community Outliers

Definition

Gao et al. '10

- Two information sources: links, node features
- Communities based on both links and node features
- Objects with features deviating from other community members defined as community outliers

88

Other network outliers

1) Global outlier: only considers node features

only consider the feature values of direct neighbors

3) Local outlier:

Anomaly detection in graph data (ICDM'12)

Gao+KDD'10 89 modified with permission

L. Akoglu & C. Faloutsos

A unified probabilistic model

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (ICDM'12)

Gao+KDD'10 modified with permission

Optimization formulation

- Maximize $P(X) \propto P(X|Z) P(Z)$
 - P(X|Z) depends on community label and model param.s
 - e.g., salaries in the high or low-income communities follow Gaussian distributions defined by mean and std

$$P(x_i = s_i | z_i = k) = P(x_i = s_i | \theta_k)$$

Normal with $\{\mu_k, \sigma_k^2\}$
$$P(x_i = s_i | z_i = 0) = \rho_0 \checkmark$$

Uniform for outliers

- P(Z) is higher if neighboring nodes from normal communities share the same community label
 - e.g., two linked nodes are likely to be in the same community
 - outliers are isolated—does not depend on the labels of neighbors

$$P(Z) \propto \sum_{w_{ij}>0, z_i\neq 0, z_j\neq 0} w_{ij}\delta(z_i-z_j)$$

91

Anomaly detection in graph data (ICDM'12)

Algorithm: parameter estimation

- Calculate model parameters Θ
 - maximum likelihood estimation
- Continuous: $\{\mu_k, \sigma_k^2\}$
 - mean: sample mean of the community
 - std: square root of sample variance of community

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (ICDM'12)

low-income mean: 20k

std: 12k

high-income:

mean: 116k

Algorithm: Inference

- Model parameters are known std: 35k
- Iteratively update the community labels of nodes
- For each node: select label that maximizes:

Experiments: Simulations

Data

- Generate continuous data based on Gaussian distributions and generate labels according to the model
- **r**: percentage of outliers, K: number of communities
- Baseline models
 - GLODA: global outlier detection (based on node features only)
 - DNODA: local outlier detection (check the feature values of direct neighbors)
 - CNA: partition data into communities based on links and then conduct outlier detection in each community

Experiments: Simulations

Case study on DBLP

- Conferences graph
 - Links: % common authors among two
 - Node features: publication titles in the conference

Communities:

- Database: ICDE, VLDB, SIGMOD, PODS, EDBT
- Artificial Intelligence: IJCAI, AAAI, ICML, ECML
- Data Mining: KDD, PAKDD, ICDM, PKDD, SDM
- Information Analysis: SIGIR, WWW, ECIR, WSDM

Community outliers: CVPR and CIKM

Akoglu et al. '12 Cohesive groups in attributed graphs

Problem:

Given a graph with node attributes (features)

- social networks + user interests
- phone call networks + customer demographics
- gene interaction networks + gene expression info

Find cohesive clusters, bridges, anomalies

Note: cohesive cluster: similar connectivity & attributes

Problem sketch

Given adjacency matrix A and feature matrix F Find homogeneous blocks (clusters) in A and F * parameter-free

* scalable

Problem formulation

How many node- & attribute-clusters?
 How to assign nodes and attributes to clusters?

Main idea: employ Minimum Description Length

Problem formulation

- L (M) : Model description cost
 - 1. $\log^* n + \log^* f$ n: #nodes, f: #attributes
 - k: #node-clusters, I: #attribute-clusters
 - **3.** nH(P) + fH(Q)

2. $\log^* k + \log^* l$

- $p_i = \frac{r_i}{n}$ size of node-cluster i size of attribute-cluster j $q_j = \frac{c_j}{f}$
- L(D|M): Data description cost given Model
 - **1.** For each block in A and F, #1s: $\log^* n_1(B_{ij})$

A similar problem (column re-ordering for minimum total run length) is shown to be NP-hard [Johnson+]. (reduction from Hamiltonian Path)

 $= -n_1(B_{ij}) \log_2(P_{ij}(1)) - n_0(B_{ij}) \log_2(P_{ij}(0))$

Algorithm sketch

The algorithm is iterative and monotonic –will converge to local optimum

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (ICDM'12)

PICS at work (Political books)

Examples of "core" liberal and conservative books

Anomaly detection in graph data (ICDM'12)

PICS at work (Reality mining)

PICS at work (YouTube)

Part I: References (attribute graphs)

- C. C. Noble and D. J. Cook. <u>Graph-based anomaly</u> <u>detection</u>. KDD, pages 631–636, 2003.
- W. Eberle and L. B. Holder. <u>Discovering structural</u> <u>anomalies in graph-based data</u>. ICDM Workshops, pages 393–398, 2007.
- Michael Davis, Weiru Liu, Paul Miller, George Redpath: <u>Detecting anomalies in graphs with numeric labels</u>. 1197-1202, CIKM 2011.
 - Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, Jiawei Han: <u>On community outliers and their efficient</u> <u>detection in information networks</u>. KDD 2010: 813-822.
- Leman Akoglu, Hanghang Tong, Brendan Meeder, Christos Faloutsos. <u>PICS: Parameter-free Identification of Cohesive</u> <u>Subgroups in large attributed graphs</u>. SDM, 2012.

Tutorial Outline

- Motivation, applications, challenges
- Part I: Anomaly detection in static data
 - Overview: Outliers in clouds of points
 - Anomaly detection in graph data

Part II: Event detection in **dynamic** data

- Overview: Change detection in time series
- Event detection in graph sequences

Part III: Graph-based algorithms and apps

- Algorithms: relational learning
- Applications: fraud and spam detection

Coffee break...

Anomaly detection in graph data (ICDM'12)

108