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        Outliers        vs.   Graph anomalies 

    

Clouds of points 

(multi-dimensional) 
Inter-linked objects 

(network) 

This tutorial 
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Roadmap 

13:30     Introduction & motivation 

  Part I: Anomaly detection   

        in static data  

15:30 Coffee break 

16:00 Part II: Anomaly detection   

                in dynamic data  

  Part III: Graph-based algorithms      

       & applications  

 18:00 The End  
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Disclaimers 

     This tutorial does not necessarily  
 cover all related work 

     References are not necessarily 
 authoritative and complete   

   

      Several slides have been reused 
 or modified by the permission 
 of the original creators. 
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Anomaly detection: Applications 

Network intrusion 
Healthcare fraud 

Credit card fraud Tax evasion 
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Applications 

Investment fraud 

Insurance fraud 

Click fraud 

Web spam 

Email spam 

Malware 

Auction fraud 

Insider threat 

Medical diagnosis 

Image/video surveillance 

Damage detection 

Malicious cargo 

Performance monitoring 

Fake reviews 

False advertising 

Spyware 
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Anomaly detection: definition 

 (Hawkins’ Definition of Outlier, 1980) 

 “An outlier is an observation that differs    

 so much from other observations as to 

 arouse suspicion that it was generated  

 by a different mechanism.” 

 

   

 

  outlier, anomaly, outbreak, event, fraud, …  

No unique 

definition 

Many definitions in 

various contexts 
leads to 
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Anomaly detection: definition 
 for practical purposes, 

   a record/point/graph-node/graph-edge      

 is flagged as anomalous  

    if a rarity/likelihood/outlierness score   

 exceeds a user-defined threshold 

 

 anomalies: 

  rare (e.g., rare combination of                     

categorical attribute values) 

  isolated points in n-d spaces 

  surprising (don't fit well in our mental/statistical 

model == need too many bits under MDL) 
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Challenges 

Categorical, 

Numerical, 

Relational, … 

(Variety) 

Temporal 

(Velocity) Unbalanced 

(fraud is rare) 

Unlabeled 

(no ground truth) 

 

     Data 
(Volume) 

record 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 9 



Why graph-based detection? 

 Powerful representation 

 Interdependent instances 

 Long-range relations  

 Node/Edge attributes (data complexity) 

 Hard to fake/alter (adversarial robustness) 

 

 Abundant relational data 

 Web, email, phone call, …  
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Real graphs (1) 
-

-

-

-

- 

Internet Map 
Food Web 

Web Graph 

Terrorist Network  

Blog networks 

Biological networks 
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Real graphs (2) 

Protein-protein 

Interaction 

Power 

Grid 

Social Network 

Dating network 

Retail networks 
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Problem revisited for graphs 

 Three different problem settings 

 Unlabeled/Labeled (Attributed) Graphs 

 Static/Dynamic Graphs 

 Un-/Semi-/- Supervised Graph Techniques  

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 13 



Taxonomy 
Graph Anomaly Detection 

Static graphs Dynamic graphs Graph algorithms 

Feature based 

Structural features 

Recursive features 

Community 
based 

Plain Attributed 

Structure based 

Substructures 

Subgraphs 

Community 
based 

Distance based 

Feature-distance 

Structure distance 

Plain 

Structure based 

“phase transition” 

Learning 

models 

Inference 

RMNs 

PRMs 

RDNs 

MLNs 

Iterative 
classification 

Belief 
propagation 

Relational netw. 
classification 
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Goal of this tutorial 

 Introduce various problem formulations 

 Definitions change by application/representation 

 Applications of problem settings 

 Intrusion, fraud, spam 

 Introduce existing techniques 

 Model fitting, factorization, relational inference 

 Pros and Cons 

 Parameters, scalability, robustness 
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Tutorial Outline 
 Motivation, applications, challenges 

 Part I: Anomaly detection in static data 

 Overview: Outliers in clouds of points 

 Anomaly detection in graph data 

 Part II: Event detection in dynamic data 

 Overview: Change detection in time series 

 Event detection in graph sequences 

 Part III: Graph-based algorithms and apps 

 Algorithms: relational learning 

 Applications: fraud and spam detection 
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Part I:  Anomaly detection 
    in static graphs 

L. Akoglu & C. Faloutsos 
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Part I: Outline 
 Overview: Outliers in clouds of points 

 Outliers in numerical data points 

 distance-based, density-based, … 

 Outliers in categorical data points 

 model-based  

 Anomaly detection in graph data 

 Anomalies in unlabeled, plain graphs 

 Anomalies in node-/edge-labeled, attributed 

graphs 
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Outlier detection 

 Anomalies in multi-dimensional data points 

 Density-based 

 Distance-based 

 Depth-based 

 Distribution-based 

 Clustering-based 

 Classification-based 

 Information theory-based 

 Spectrum-based 

 … 

 No relational links between points 
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Part I: References (outliers) 
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Part I: Outline 
 Overview: Outliers in clouds of points 

 Outliers in numerical data points 

 distance-based, density-based, … 

 Outliers in categorical data points 

 model-based  

 Anomaly detection in graph data 

 Anomalies in unlabeled, plain graphs 

 Anomalies in node-/edge-labeled, attributed 

graphs 
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Taxonomy 
Graph Anomaly Detection 

Static graphs Dynamic graphs Graph algorithms 

Feature based 

Structural features 

Recursive features 

Community 
based 

Plain Attributed 

Structure based 

Substructures 

Subgraphs 

Community 
based 

Distance based 

Feature-distance 

Structure distance 

Plain 

Structure based 

“phase transition” 

Learning 

models 

Inference 

RMNs 

PRMs 

RDNs 

MLNs 

Iterative 
classification 

Belief 
propagation 

Relational netw. 
classification 
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Anomalies in Weighted Graphs 

 Problem: 

Akoglu et al. ’10 

Q1. Given a weighted 

and unlabeled graph, 

how can we spot 

strange, abnormal, 

extreme nodes? 

 

Q2. Can we explain why 

the spotted nodes are 

anomalous? 
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Problem sketch 
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ego ego-net 

1) For each node,  

 1.1) Extract “ego-net” (=1-step neighborhood) 

 1.2) Extract features (#edges, total weight, etc.) 

       features that could yield “laws” 

       features fast to compute and interpret  

2)  Detect patterns:  

   regularities 

3)  Detect anomalies:  

  “distance” to patterns 

OddBall: approach 
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What is odd? 
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 Ni: number of neighbors (degree) of ego i 

 Ei: number of edges in egonet i 

 

 

 

 Wi: total weight of egonet i 

 λw,i: principal eigenvalue of the weighted      

    adjacency matrix of egonet i 

 

Which features to compute? 
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λw,i  = √N = √E = √W 

λw,i  > √N  

      ~ √E, √W 

λw,i  = N ≈ √W 

λw,i  = W λw,i ≈ W 

λw,i     √W 

N: #neighbors, W: total weight 

Weighted principal eigenvalue details 
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slope=2 

slope=1 

slope=1.35 

OddBall: pattern#1 

telemarketer, spammer, 
 port scanner, “popularity  
contests”, etc. 

discussion group,  
“rank boosting”, etc. 

#neighbors N 

#
e
d
g
e
s 

E
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slope=1 

slope=1.08 

OddBall: pattern#2 

uniform, robot-like 
behavior 

high $ vs. #accounts, 
high $ vs. #donors, etc. 

#edges E 

to
ta

l 
w

e
ig

h
t 

W
 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 31 



slope=1 

slope=0.5 

slope=0.64 

OddBall: pattern#3 

total weight W 

la
rg

e
st

 e
ig

e
n
va

lu
e
  

λ
1

,w
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 can tell what type 
   of anomaly a node 
   belongs to 

 can quantify “anomalous-ness”    
   of nodes using score 
    

scoredist = distance to fitting line 

scoreoutl = outlier-ness score 

score = func ( scoredist , scoreoutl )   

OddBall: anomaly detection 
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Bipartite graphs:              |V|            |E|      
1. FEC Don2Com          1.6M             2M 
2. FEC Com2Cand            6K         125K  
3. DBLP Auth2Conf       21K             1M 
 
 
Unipartite graphs:           |V|       |E| 
4. BlogNet                 27K        126K 
5. PostNet                   223K         217K 
6. Enron           36K        183K 
7. AS peering                  11K            8K 

OddBall: datasets 
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OddBall at work (Posts) 

#citations  

#
cr

o
ss

-c
it
a
ti
o
n
s 

223K posts 

217K citations 

POSTS 
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OddBall at work (FEC) 

#checks 

 $  

COM2CANDIDATES Kerry, 
John F. 

Snyder, 
James E. Jr 

Russo,
Aaron 

6K candidates 

125K checks 
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OddBall at work (DBLP) 

#publications  
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Recursive structural features 
Henderson et al. ’11 

Structural information 

   local 

  egonet 

recursive 

Neighborhood   
 Regional 

 Main idea: recursively combine “local” (node-

based) and neighbor (egonet-based) features 

 Recursive feature: any aggregate computed over 

any feature (including recursive) value among a 

node’s neighbors 
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Recursive structural features 

   local   egonet recursive 

in- and out-degree, 

weighted versions  

within-, incoming-,  

outgoing-egonet  

edges, weighted 

versions 

aggregate feature 

over neighbors 
e.g. max/min/avg degree 
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Recursive structural features 

 Neigborhood features 

 captures node connectivity 

 

 

 

 

 

 Regional features 

 captures “kinds” of                                             

neighbors 
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Computing recursive features 

Prune highly 

correlated features 

CDF 

Log(feature value) 

recursive features 

vertical logarithmic 

binning of size p 

bin feature (integer) 

replace each CC in  s-friend 

graph by single feature 

retain simpler features 

not disagree at >s nodes 

paired features (s-friend) 

i.e. generated in fewer iterations 

retained features from each iteration 

re
p
e
a
t u

n
til n

o
 p

ru
n
in

g
 

details 
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Recursive structural features  
 Capturing regional (behavioral) information in 

large graphs 

 Feature construction linear in graph size 

 

 Aggregates only for numerical features 

 Parameters p, s for binning and pruning 
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ReFeX: Recursive Feature eXtraction  

 

 

 

 

 

 

 

 Recursive features proved effective in transfer 

learning, identity resolution                                   
(yet to be studied for anomaly detection) 
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Anomalies in Bipartite Graphs 

 Problem: 

Q1. Neighborhood formation (NF) 

 Given a query node q in V1, 

what are the relevance scores 

of all the nodes in V1 to a ? 

 

Q2. Anomaly detection (AD) 

 Given a query node q in V1,  

what are the normality scores 

for nodes in V2 that link to a ?  

 

Sun et al. ’05 

V1 V2 

q 
 

.3 

.2 

.05 

.01 

.002 

.01 

.25 

.25 

.05 
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Applications of problem setting 

 Publication network  

 (similar) authors vs. (unusual) papers 

 P2P network 

 (similar) users vs. (“cross-border”) files 

 Financial trading network 

 (similar) stocks vs. (cross-sector) traders 

 Collaborative filtering 

 (similar) users vs. (“cross-border”) products 
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1) Neighborhood formation 

 Main idea:  
 Random-Walk-with Restart from q 

 Steady-state V1 prob.s as relevance 

 (1) Construct transition matrix P 

 

 (2) Fly-back prob. c to q 

 (3) Solve for steady state 
 

V1 V2 

q 
 

.3 

.2 

.05 

.01 

.002 

.01 

q 

c c c 

c 

(1-c) 

c 

(t) (t+1) 

Approx: RWR on graph partition containing q  
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2) Anomaly detection 

 Main idea:  
 Pairwise “normality” scores of neighbors(t) 

 Function of (e.g. avg) pair-wise scores 

 

 (1) Find set S of nodes connected to t 

 (2) Compute |S|x|S| normality matrix R 

 asymmetric, diagonal reset to 0 

 (3) Apply score function f(R) 

 e.g. f(R) = mean(R) 

  

t 

t 

S 

S 
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Experiment 

 3 real datasets 
 DBLP conf-auth 

 DBLP auth-paper 

 IMDB movie-actor 

 

 

 Randomly inject 100 

    nodes, each with k (avg. degree) edges 

    (biased towards high-degree nodes) 

 No qualitative results 

 

n
o
rm

a
lit

y
 s

c
o
re
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Graph Anomalies by NNrMF 

 Low-rank adjacency matrix factorization of a 

(sparse) graph reveals communities and anomalies  

Tong et al. ’11 

  
 

 

 
Graph Adj. Matrix A A = F x G + R 

community anomalies 

Low-rank matrices Residual matrix 
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Non-negativity constraints 

 For improved interpretability 

 A Typical Procedure: 

  
 

 

 

 An Example 

Interpretation by Non-negativity 
 

Graph 
Adjacency 
Matrix A 

A = F x G + R 

community 

anomalies 

Non-negative Matrix Factorization 

F >= 0; G >= 0 
(for community detection) 

Non-negative Residual  
Matrix Factorization 

R(i,j) >= 0; for A(i,j) > 0 

(for anomaly detection) 
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Optimization formulation 

Non-negative  
residual 

Common in  
Matrix Factorization 

 

 

 

 

 

 Q: How to find ‘optimal’ F and G?  

 D1: Quality        C1: objective non-convex 

 D2: Scalability   C2: large graph size 
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 Basic Idea 1: Alternating 

 

 

 

 

 Basic Idea 2: Separation 

 argminG 

s.t.. 

argminG 
 

s.t.. 
   i, 

Optimization: batch 

Not convex w.r.t. F and G, jointly 

But convex if fixing either F or G 

For each j 

Standard Quadratic Programming 

Overall Complexity: Polynomial 

details 
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Optimization: incremental 

 Basic Idea 0: Recursive 

 Basic Idea 1: Alternating 

 

 

 Basic Idea 2: Separation 

 

Adjacency Matrix 
A 

Initialize: R=A 

Rank-1 Approximation 

Update Residual  
Matrix R 

Output Final  
Residual Matrix 

F
o

r e
a

c
h

 j 
QP for a single variable  
w/ boundary constrains 

Solved in  
constant time 

Overall Complexity: Linear wrt # of edges 

details 
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Experiments 

 NNrMF can spot 4 types of anomalies 

SVD  

residuals 
NNrMF  

residuals (top-k edges) 
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Experiments 

Effectiveness 

Anomaly Type 

Accuracy Wall-clock Time 

# of edges 

Efficiency 

 4 real datasets, with injected anomalies 

 

rank 
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Intrusion as (Anti)social Communication   

 Problem:  

Q. How to detect malicious  

attacks in computer networks? 

 Main insight for intrusion:  

 entering a community to which one doesn’t belong 

 look for communication that does not respect 

community boundaries 

Ding et al. ’12 
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Problem formulation 
 Network representation as a bipartite graph 

 

 

 

 Source and destination IPs may overlap 

 One mode projection GP: connect two source IPs 

with at least 1 common neighbor 

 Alternative GW: weigh by 

   correlation coefficient 

 

Source IPs 

Dest. IPs 
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Intrusion data with ground truth 

 Data: netflow traffic 

 from a large European ISP 

 2 weeks data in 2007: source IP, dest IP, 

start/end time, number of bytes/packets sent 

 Ground truth: traffic sources that attempted an 

intrusion as recorded by Dshield* 

 known IPs sending malicious or unwanted traffic 

 

* http://www.dshield.org/ 
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Detection methods 
 Community detection: Standard community 

detection methods fail to distinguish known IPs 

from communities  

 

 Cut-vertices:  

   Iteratively remove cut-vertices 

 6.6% of cut-vertices are Dshields (randomization 

yields significance; (1-2.2%) at 0.05) 

 Clustering and betweenness deemed discriminative 
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Experiments 
 Malicious if clustering/betweenness below/above 

threshold 

                                          

False Positive Rate 

T
ru

e
 P

o
si

ti
v
e
 R

a
te

 

for a given threshold 

 Clustering gives better 

     discrimination 

 GW does not provide much 

     improvement over GP 
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 J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. 

Neighborhood formation and anomaly detection in bipartite 

graphs. ICDM, 2005.  

 Hanghang Tong, Ching-Yung Lin: Non-Negative Residual 

Matrix Factorization with Application to Graph Anomaly 
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Part I: Outline 
 Overview: Outliers in clouds of points 

 Outliers in numerical data points 

 distance-based, density-based, … 

 Outliers in categorical data points 

 model-based  

 Anomaly detection in graph data 

 Anomalies in unlabeled, plain graphs 

 Anomalies in node-/edge-labeled, attributed 

graphs 
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Taxonomy 
Graph Anomaly Detection 

Static graphs Dynamic graphs Graph algorithms 

Feature based 

Structural features 

Recursive features 

Community 
based 

Plain Attributed 

Structure based 

Substructures 

Subgraphs 

Community 
based 

Distance based 

Feature-distance 

Structure distance 

Plain 

Structure based 

“phase transition” 

Learning 

models 

Inference 

RMNs 

PRMs 

RDNs 

MLNs 

Iterative 
classification 

Belief 
propagation 

Relational netw. 
classification 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 63 



Anomalies in labeled graphs 

 Problem: 

Q1. Given a graph in which nodes and edges     

       contain (non-unique) labels, what are   

       unusual substructures? 

Q2. Given a set of subgraphs, what are the  

       unusual subgraphs? 

 

 

 

 

 
Note: assumption is anomalies are connected 

Noble & Cook. ’03 
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Background 

 Subdue*: An algorithm for detecting repetitive 

patterns (substructures) within graphs.   

 Substructure: A connected subgraph of the 

overall graph. 

 Compressing a graph: Replacing each 

instance of the substructure with a new 

vertex representing that substructure. 

 Description Length (DL): Number of bits 

needed to encode a piece of data 

 

 

 

* http://ailab.wsu.edu/subdue/ 
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Background 

 Subdue uses the following heuristic: 

 The best substructure is the one that minimizes 

 F1(S,G) = DL(G | S) + DL(S) 

 G: Entire graph, S: The substructure,  

 DL(G|S) is the DL of G after compressing it using S,  

 DL(S) is  the description length of the substructure. 

 

 

 

 Iterations after compressing at each step 

S 
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Background 
Given database D and set of models 

for D, Minimum Description Length 

selects model M that minimizes 

     L (M)     +     L (D|M) 

length in bits:  

description of  

model M 

length in bits: data,  

encoded by M 

Bishop: PR&ML 

d = 1 

d = 9 

a1x+a0 deltas 

a9x
9+…+a1x+a0  {} 

vs. 

vs. 
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1) Anomalous Substructures 

 Main idea: anomalies (by def.) occur infrequently, 

they are roughly opposite to “best substructures” 

 Find substructures S that maximize F1(S,G)? 

 Nope, it flags all single nodes as anomalies! 

 Instead, find those that minimize 

    F2(S, G) = Size(S) * Instances(S,G) 

 Approximate inverse of F1(S,G) 

 

 Intuition: Larger substructures are expected to   

  occur few times; the smaller the   

  substructure, the less likely it is rare 
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Example 
 F2(S, G) = Size(S) * Instances(S,G) 

 For node D, F2 = 1 * 1 = 1 

 For AC and DA, it is 2 * 1 = 2 

 For G (whole graph), it is 9 * 1 = 9 

 Hence D is considered the most anomalous. 

 

 
 

 

 Note: Usually a threshold for F2 is used and anomalies 

are ranked by their scores. 
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2) Anomalous Subgraphs 

 Main idea: subgraphs containing few common 

substructures are generally more anomalous 

 Define compressibility score A in [0,1] 

# Subdue 

iterations 
fraction compressed  

at ith iteration 
fast drop off in  

early iterations 
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Experiments 

 Data: 1999 KDD Cup Network Intrusion 

 Ground truth: connection records, “normal” or 

attack (37 types), 41 features of connection 

(duration, protocol type, number of bytes, etc.) 

 Each individual test involved 50 records of which 

only one is of a particular attack type. 

 

 Use Subdue to find anomalous substructures 

 Prune all subgraphs with size>3, F2>6 (arbitrary) 
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Performance 
 

 

 

 

 

 

 

 Note: Degree of anomaly D(S): 1/F2  

 Attack accounts for D(S1) / (Sum [D(Si)] 

 e.g., if F2 = (2, 3, 4) for (S1, S2, S3) and S2 occurs in the attack, 

then attack accounts for  (1/3) / (1/2 + 1/3 + 1/4) = 4/13 of 

discovered anomalies 

 

Lower  

is better 
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Anomalies with numeric labels 

 How about numeric labels? 

 Noble & Cook work with categorical labels 

 

Davis et al. ’11 

(1) unusual substructures 
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 How about numeric labels? 

 Noble & Cook work with categorical labels 

 

Anomalies with numeric labels 

(2) unusual subgraphs 
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Anomalies with numeric labels 

 Main idea (discretization):  

 assign categoric label q0 to “normal” values, and  

 “outlierness” score qi to all others i 

 

 Example: 

 

 

 

 

 Several “outlierness” scores (pdf-fitting, kNN, 

    LOF, clustering-based) 

 

 

 

 

empirical distribution of a label 
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Discretization  

 Model fitting (GMM) 

 

 

 

 

 kNN distance 

normal 
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Discretization  

 Density outlier score (LOF) 

 

 

 

 Cluster-based (CbLOF) 

 

 

normal 

distance to closest “large” (k-means) cluster centroid 

Breunig et al. ’00 

He et al. ’03 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 77 



Discretization 

 Other possible discretization techniques 

 SAX (Symbolic Aggregate approXimation) 

 http://www.cs.ucr.edu/~eamonn/SAX.htm 

 MDL-binning 

 P. Kontkanen and P. Myllymäki. MDL histogram 

 density estimation. In AISTAT, 2007. 

 Minimum entropy discretization 

 U.M. Fayyad and K.B. Irani. Multi-interval discretization 

of continuous-valued attributes for classification 

learning. In Proc. IJCAI, pages 800–805, 1989. 

 Logarithmic binning 

 especially for skewed distributions 
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Experiment 
 Data: Access card transaction graphs 

 node: door sensor, edge (u,w): movement uw, 

weight(u,w): time uw  (only numeric attribute) 

 

normal anomaly score 

#
tr

a
n
sa

ct
io

n
s 

Subdue 
(numeric feat. ignored) 

CbLOF 
(k=10) 

Equal freq. 
(b=10) 

Equal width 
(b=10) 

k-NN dist. 
(k=10) 

* arbitrary k, b 
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Anomalies in labeled graphs 
 Problem: 

Q1. Given a graph in which nodes and edges  

 contain (non-unique) labels, how to find 

 substructures that are very similar to, though 

 not the same as, a normative substructure? 

 (“best substructure” as for Subdue)* 

 

 Intuition: 

 

Eberle and Holder. ’07 

“The more successful money-laundering 
apparatus is in imitating the patterns and 
behavior of legitimate transactions, the less 
the likelihood of it being exposed.”  

– United Nations Office on Drugs and Crime 
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Formal definition 
 Given graph G with a normative substructure S, 

a substructure S’ is anomalous if difference d 

between S and S’ satisfies 0 < d <= X, where X 

is a (user-defined) threshold and d is a measure 

of the unexpected structural difference. 

 Assumptions 

 Majority of G consists of a normative pattern, and 

no more than X% of it is altered in an anomaly. 

 Anomalies consist of one or more modifications, 

insertions or deletions. 

 Normative pattern is connected. 
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Three Types of Anomalies 

1) GBAD-MDL (Minimum Descriptive Length): 

 anomalous modifications 

2) GBAD-P (Probability): anomalous insertions 

3) GBAD-MPS (Maximum Partial Substructure): 

 anomalous deletions 

 

 

 
Note: prone to miss more than one type of anomaly  

 e.g., a deletion followed by modification 
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1) Information Theoretic Approach 
 Find normative substructure S that minimizes 

 F(S,G) = DL(G | S) + DL(S) 

 For each instance Ik of S 

 

 

 Example: 

 

 
A

C B

A

D B

A

C B

A

C B

A

C B

cost to modify Ik into S  
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2) Probabilistic Approach 
 Find normative substructure S 

 Find extensions to S with lowest probability 

 For each extension Ik of S 

 

 

 

 Example: 

 

 

D

B

C A

B

C A

B

C A

D C D

B

C A

B

C A

E E

B

C A

B

C A

C
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3) Maximum Partial Substructure Approach 

 Find normative substructure S 

 Find “ancestral” substructures                that are 

missing various edges and vertices. 

 For each instance Ik of Sn 

 

 Example: 

 D

B

C A

B

C A

B

C A

D D D

B

C A

B

C A

# instances of Ik  
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Experiments (Cargo shipments) 

 Data: obtained from Customs                            

and Borders Protection (CBP) 

 Scenario: 

 Marijuana seized at Florida port [press release by U.S. 

Customs Service, 2000]. 

 Smuggler did not disclose some financial information, 

and ship traversed extra port. 

 GBAD-P discovers the extra traversed port; 

 GBAD-MPS discovers the missing financial info. 
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Experiments (Network intrusion) 

 Data: 1999 KDD Cup Network Intrusion 

 100% of attacks were discovered with GBAD-MDL 

 55.8% for GBAD-P and 47.8% for GBAD-MPS 

 

Note  

 Data consists of TCP packets that have fixed size 

 Thus, the inclusion of additional structure, or  the removal 

of structure, is not relevant here. 

 Modification is the only relevant one, at which GBAD-MDL  

performs well 

 

 High (unreported) false positive rate! 
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Community Outliers 
 Definition 

 Two information sources: links, node features 

 Communities based on both links and node features 

 Objects with features deviating from other community 
members defined as community outliers 

 

Gao et al. ’10 

Community  

outlier 
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V6
V5

V4

110K
40K

100K

V2

160KV170K

V8

30K V7 10K

V9

10K

V10

30K

V3140K

V2

1) Global outlier:  

only considers 

node features 

2) Structural outlier: 
   only consider links 
 
3) Local outlier:  
   only consider the    
   feature values of    
   direct neighbors 

V7

10

V9

V8

30

V10

40 70 100 110 140 160

V6 V1 V4 V5 V3 V2

Global Outlier

Salary (in $1000)

structural outlier local outlier 

Other network outliers 
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community 

label Z 

{0, 1, …, K} 

outlier 

node 

features 

X 

link structure 

W 

model 

parameters 

X’s are 

drawn from 

K: number of 

communities 

(user input) 

A unified probabilistic model  
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Optimization formulation 

 Maximize P(X)       P(X|Z) P(Z) 
 P(X|Z) depends on community label and model param.s 

 e.g., salaries in the high or low-income communities follow 
Gaussian distributions defined by mean and std 

 

 

 

 

 P(Z) is higher if neighboring nodes from normal 
communities share the same community label 
 e.g., two linked nodes are likely to be in the same community 

 outliers are isolated—does not depend on the labels of neighbors 

 

 



Uniform for outliers 



Normal with 

details 
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Algorithm 

Fix    , find Z  
that maximizes P(Z|X) 

Fix Z, find  
that maximizes P(X|Z) 





Initialize Z 

Inference 

Parameter 

estimation 

  : model parameters 

Z : community labels 
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Algorithm: parameter estimation 
 Calculate model parameters 

 maximum likelihood estimation 

 Continuous: 
 mean: sample mean of the community 

 std: square root of sample variance of community 

high-income: 

mean: 116k 

std: 35k 

low-income: 

mean: 20k 

std: 12k 
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Algorithm: Inference  
 Calculate label assignments Z 

 Model parameters are known 

 Iteratively update the community labels of nodes 

 For each node: select label that maximizes: 

 

100k 
low-
income 

high-
income 

high-
income 

P(salary=100k|high-income) 

P(salary=100k|low-income) 

constant 

P(high-income|neighbors) 

P(low-income|neighbors) 

high-income: 

low-income: 

outlier: 

high-income: 

mean: 116k 

std: 35k 

low-income: 

mean: 20k 

std: 12k 
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Experiments: Simulations 
 Data 

 Generate continuous data based on Gaussian 

distributions and generate labels according to the 

model 

 r: percentage of outliers, K: number of communities 

 Baseline models 

 GLODA: global outlier detection (based on node 

features only) 

 DNODA: local outlier detection (check the feature 

values of direct neighbors) 

 CNA: partition data into communities based on links 

and then conduct outlier detection in each community 
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Experiments: Simulations 

Precision 
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Case study on DBLP 

 Conferences graph 

 Links: % common authors among two 

 Node features: publication titles in the conference 

 Communities: 

 

 

 

 

 

 Community outliers: CVPR and CIKM 
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Cohesive groups in attributed graphs 

 Problem: 

Given a graph with node attributes (features) 
 social networks + user interests  

 phone call networks + customer demographics           

 gene interaction networks + gene expression info  

Find cohesive clusters, bridges, anomalies 
 

 

 

 

 

 

 

 

Note: cohesive cluster: similar connectivity & attributes 

 

 

Akoglu et al. ’12 

A 
B 
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Problem sketch 

People People Groups 

P
e
o
p
le

 

P
e
o
p
le

 G
ro

u
p
s 

(Binary) 
Features 

P
e
o
p
le

 

Feature  
Groups 

P
e
o
p
le

 G
ro

u
p
s 

Given adjacency matrix A and feature matrix F 

Find homogeneous blocks (clusters) in A and F  

* parameter-free 

* scalable 

A F 
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Problem formulation 

1.How many node- & attribute-clusters? 

2.How to assign nodes and attributes to clusters? 

L (M)     +     L (D|M) 

encoding length 

of blocks 

encoding length 

of clustering 

Good  

Clustering 

Good 

Compression 
implies 

Main idea: employ Minimum Description Length 
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 L (M) : Model description cost 

1.   as                        n: #nodes, f: #attributes 

2.                               k: #node-clusters, l: #attribute-clusters 

3.                                                 size of node-cluster i 

                                                      size of attribute-cluster j    

 

 L(D|M): Data description cost given Model 

1. For each block in A and F , #1s:   

2.   

 

         where                                                    

                                           

 

Problem formulation 

or 

 
A similar problem (column re-ordering for minimum 

total run length) is shown to be NP-hard [Johnson+]. 

(reduction from Hamiltonian Path) 

 

details 
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Algorithm sketch 

 
The algorithm is iterative and monotonic 

 –will converge to local optimum 
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“core and periphery” 

liberal vs. 
conservative 

Book groups 

  
  
  
  
  

  
 

B
o
o
k
s 

  PICS at work (Political books) 

Examples of  bridging  ‘conservative’ books 

Examples of “core” liberal and conservative books 

–   
–   
–   
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  PICS at work (Reality mining) 

Subjects 

Subjects 

   title Phone calls 

Device scans 

casual 

business 

grad 

call-center 

    title 
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  PICS at work (YouTube) 

YouTube users YouTube 
groups 

77K users 

30K groups 

familiar strangers 

anime lovers 

bridges 
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Tutorial Outline 
 Motivation, applications, challenges 

 Part I: Anomaly detection in static data 

 Overview: Outliers in clouds of points 

 Anomaly detection in graph data 

 Part II: Event detection in dynamic data 

 Overview: Change detection in time series 

 Event detection in graph sequences 

 Part III: Graph-based algorithms and apps 

 Algorithms: relational learning 

 Applications: fraud and spam detection 
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  Coffee break… 

L. Akoglu & C. Faloutsos 
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