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‘ Roadmap

13:30 Introduction & motivation

Anomaly detection
In static data

15:30 Coffee break

16:00 Anomaly detection
In dynamic data

Graph-based algorlthms
& applications ——

18:00 The End
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‘ Disclaimers

This tutorial does not necessarily
cover all related work '
®

References are not necessarily
authoritative and complete

Several slides have been reused
or modified by the permission
of the original creators.
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‘ Anomaly detection: Applications

Tax evasion

Credit card fraud

SMarty Bucella www.martybucella.com

"I owe that much? How much would I
owe if I turned in a friend?"

© Original Artist
Reproduction rights obtainable from
ww.Canuo’ﬁSt'nckAcom

“Sorry, it looks like your credit card has been cloned.”

Healthcare fraud
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‘ Applications

Malware
Investment fraud Click fraud Spyware
Insurance fraud Malicious cargo
Auction fraud Damage detection

Fake reviews  Medical diagnosis Email spam

False advertising

Performance monitoring
Web spam Insider threat

Image/video surveillance
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‘ Anomaly detection: definition

= (Hawkins’ Definition of Outlier, 1980)

“An outlier is an observation that differs |
so much from other observations as to
arouse suspicion that it was generated
by a different mechanism.”

No unique leads to . Many definitions in
definition various contexts

outlier, anomaly, outbreak, event, fraud, ...
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‘ Anomaly detection: definition

= for practical purposes,

a record/point/graph-node/graph-edge

Is flagged as anomalous

If a rarity/likelihood/outlierness score

exceeds a user-defined threshold

= anomalies:

0.8 4

o > rare (e.g., rare combination of -

categorical attribute values)
0 = Isolated points in n-d spaces

0.4
Ly A
02

1111111111

2000 2001 ' 2002 ' 2003 ' 2004 ' 2005 ' 2006 ' 2007 "

o = surprising (don't fit well in our mental/statistical

model == need too many bits under MDL)
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‘ Why graph-based detection?

s Powerful representation
0 Interdependent instances
o Long-range relations
o Node/Edge attributes (data complexity)
o Hard to fake/alter (adversarial robustness)

= Abundant relational data
2 Web, email, phone call, ...
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Real graphs (2)

Protein-protein
Interaction

Dating network
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'Problem revisited for graphs

= Three different problem settings
o Unlabeled/Labeled (Attributed) Graphs
o Static/Dynamic Graphs

o Un-/Semi-/- Supervised Graph Technigues

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 13



Taxonomy

Graph Anomaly Detection

\4

\ 4 A\ 4
Static graphs Dynamic graphs Graph algorithms
A 4 \4
v Plain v v
Plain Attributed Learning Inference
l l Distance based models lterative
_ _ classification
Feature based Structure based Feature-distance RMNs Belicf
Structural features || Substructures Structure distance EEI\I\/II: propagation
Recursive features || Subgraphs Relational netw.
MLNs classification
Structure based

“‘phase transition”

Community Community
based based
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‘ Goal of this tutorial

= Introduce various problem formulations
o Definitions change by application/representation

= Applications of problem settings
o Intrusion, fraud, spam

= Introduce existing techniques
o Model fitting, factorization, relational inference

= Pros and Cons
o Parameters, scalability, robustness

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 15



‘ Tutorial Outl

Ine

m Motivation, applications, challenges

B Part I: Anoma

y detection in static data

o Overview: Out

lers in clouds of points

o Anomaly detection in graph data

= Part |I: Event detection in dynamic data
o Overview: Change detection in time series

o Event detectio

nin graph sequences

= Part Ill: Graph-based algorithms and apps
o Algorithms: relational learning

o Applications: f

raud and spam detection
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Anomaly detection
In static graphs



‘ Part I: Outline

mp Overview: Outliers in clouds of points

o Outliers in numerical data points
= distance-based, density-based, ...

o Outliers in categorical data points
= model-based

= Anomaly detection in graph data
2 Anomalies in unlabeled, plain graphs

2 Anomalies in node-/edge-labeled, attributed
graphs
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‘ Outlier detection

= Anomalies in multi-dimensional data points

o Density-based | . 3

o Distance-based | b-;#

o Depth-based e -

o Distribution-based | g%:f -

. - __\—‘—\—_ﬁ

0 Cluste.r.lng_based s | ——

o Classification-based - ?;|

o Information theory-based “[ | ————
Spectrum-based ? B

Q - - _—

a . 2‘/

= No relational links between points
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Part I: References (outliers)

= M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF:
Identifying density-based local outliers. SIGMOD, 2000.

= S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C.
Faloutsos. LOCI: Fast outlier detection using the local
correlation integral. ICDE, 2003.

= C. C. Aggarwal and P. S. Yu. Outlier detection for high
dimensional data. SIGMOD, 2001.

= A. Ghoting, S. Parthasarathy and M. Otey, Fast Mining of
Distance Based Outliers in High-Dimensional Datasets.
DAMI, 2008.

= Y. Wang, S. Parthasarathy and S. Tatikonda, Locality
Sensitive Outlier Detection. ICDE, 2011.

= Kaustav Das, Jeff Schneider. Detecting Anomalous
Records in Categorical Datasets. KDD 2007.
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http://www.cse.ohio-state.edu/~wangy/icde11.pdf
http://www.cse.ohio-state.edu/~wangy/icde11.pdf

Part I: References (outliers)

Muller E., Schiffer M., Seidl T. Adaptive Outlierness for
Subspace Outlier Ranking. CIKM, 2010.

Mdaller E., Assent I., Iglesias P., Mille Y., Bohm K.
Outlier Ranking via Subspace Analysis in Multiple Views

of the Data. ICDM, 2012.

L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos. Fast
and Reliable Anomaly Detection in Categoric Data.

CIKM, 2012.

A. Chaudhary, A. S. Szalay, and A. W. Moore. Very fast
outlier detection in large multidimensional data sets.
DMKD, 2002.

Survey: V. Chandola, A. Banerjee, V. Kumar: Anomaly
Detection: A Survey. ACM Computing Surveys, Vol.
41(3), Article 15, July 20009.
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‘ Part I: Outline

= Overview: Outliers in clouds of points

o Outliers in numerical data points
= distance-based, density-based, ...

o Outliers in categorical data points
= model-based

= Anomaly detection in graph data
m) Anomalies in unlabeled, plain graphs

2 Anomalies in node-/edge-labeled, attributed
graphs
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Taxonomy

Graph Anomaly Detection

\4

\4 \ 4
Static graphs Dynamic graphs Graph algorithms
\4 v
Plain v !
Attributed Learning Inference
l Distance based models lterative
. - classification
Feature based Structure based Feature-distance RMNs Belief
Structural features || Substructures Structure distance EEI\I\/II: propagation
Recursive features || Subgraphs Relational netw.
MLNS classification
Structure based
Community Community “phase transition”
based based
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Akoglu et al. 10

'Anomalies in Weighted Graphs  —

m Problem:

Q1. Given a weighted
and unlabeled graph
how can we spot
strange, abnormal,
extreme nodes?

t

Jf .'ja
’ Q

Q2. Can we explain why !
the spotted nodes are -

anomalous?

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12)



‘ Problem sketc

lO'r
‘0.[

10}

10 "
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'e 4 4 - 1 J
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' OddBall: approach

1) For each node,
1.1) Extract “ego-net” (=1-step neighborhood)
1.2) Extract features (#edges, total weight, etc.)
-> features that could yield “laws”
-> features fast to compute and interpret

2) Detect patterns:
-> regularities

3) Detect anomalies:
—>“distance” to patterns =

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 26



What is odd? ‘
K i % g

Sdly S R
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‘ Which features to compute?

= N;: number of neighbors (degree) of ego i
= E. number of edges in egonet |

= W, total weight of egonet |
= A, principal eigenvalue of the weighted
adjacency matrix of egonet |

\/ s

\
\
\ \\
‘4\7 "—\\7
\ \

\ \
\ \
()
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‘ Weighted principal eigenvalue w

A = N = VE = W
A T

~x VE, \W
% h oW || A= N~ W
o0 Awi =W Ay i= W

N: #neighbors, W: total weight

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 29



'OddBall: pattern#1.

mﬁE
: - ra
discussion group, 7
“rank boosting”, etc. slope=2 e
o P / sI09§=1.35
Ll m“;— W% ’ ‘,i
0))
U .
O) o'k
3 p
#* ! slope 1
10 F
telemarketer, spammer,
o'l port scanner, “popularity
7 contests”, etc.
[ 44
n- #°
10 " »—— '1 ..|2 3 4
10 10 10 10 10

#neighbors N
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'OddBall: pattern#2

high $ vs. #accounts,
high $ vs. #donors, etc.

S—
; 10°
— |
=
_'f_g 1wkt N
S : AN , .
uniform, robot-like
10’ behavior
/Y
1DDD ) III|1 R | Ll |4 III|5
10 10 10 10

#edges E
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10°r Vs
/7
/
/
slope= 1{/
Q" /" slope=0.64
- .~ SIOpeE=U.
© o e "4‘ f¢'*;+* t++ *
> 3 ;1: so + o
!G:) 10k _T.-_': ‘ .:
o | RS
2 > _.-~"slope=0.5
((D) 1|]1 #
9
L g \;( :g/
L
( ; i M L i L i Ll
mm” 10° 10° 10° 10° 10°
total weight W
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'OddBall: anomaly detection

| scorey = distance to fitting line
score, = outlier-ness score

score = func ( SCOr€jist » scoreouu)

taal
10’

10°
# neighbors N

total weight W

v" can tell what type

of anomaly a node
belongs to

v can quantify “"anomalous-ness”
of nodes using score

L. Akoglu & C. Faloutsos

g 10’
# edges E
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' OddBall: datasets

Bipartite graphs: V] |E]
1. FEC Don2Com 1.6M 2M
2. FEC Com2Cand 6K 125K
3. DBLP Auth2Conf 21K 1M
Unipartite graphs: V| |E]

4. BlogNet 27K 126K
5. PostNet 223K 217K
6. Enron 36K 183K
/. AS peering 11K 8K

L. Akoglu & C. Faloutsos
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#cross-citations

107 ¢

10k

POSTS

{oug Y

i 7 : :

Mg +of | | | 1,-" http:/finstapundit.com/
http:fflwww.sizemo o.uk/ P archives/025235.php
2005/08/i-feel-some-movies » ‘J,
-coming-on.html ﬁ"

p N

10 10 10

#citations
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' OddBall at work (FEC)

COM2CANDIDATES  Kerry,
John F.

Snyder,
James E. Jr

#checks
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' 0ddBall at work (DBLP)

AUTHORS(AUTH2CONF)

) 1 1 N R R R T | 1 1 N E B R A | 1 1 M TR A |
10 il 1 2 3

10 n 1 10

#publications
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Henderson et al. 11

W

‘ Recursive structural features

= Main idea: recursively combine “local” (node-
based) and neighbor (egonet-based) features
o Recursive feature: any aggregate computed over

any feature (including recursive) value among a
node’s neighbors

Structural information

Neighborhood

recurs

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 38




in- and out-degree,  within-, incoming-, aggregate feature

weighted versions  outgoing-egonet  over neighbors
edges, weighted e.g. max/min/avg degree
versions (1+1+2+0+1+0+1)/7=0.86

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 39



‘ Recursive structural features

= Neigborhood features
0 captures node connectivity

Al

Source vs. Sink Star vs. Cluster

= Regional features
o captures “kinds” of
neighbors

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 40




‘ Computing recursive features detanis

1 4
0.8

CDF

0.4

0.2

Log(feature value) paired features

Prune highly
correlated features

recursive features y

vertical logarithmic
binning of size@

bin feature (integer)

not disagree at(>s)nodes

CREe)

replace each CC in s-friend
graph by single feature

retain simpler features

l.e. generated in fewer iterations

buiunud ou |pun jeada.

L. Akoglu & C. Faloutsos
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Recursive structural features

= Capturing regional (behavioral) information in
large graphs

= Feature construction linear in graph size

= Aggregates only for numerical features
= Parameters p, s for binning and pruning

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 42



ReFeX: Recursive Feature eXtractlon

A Reglonal

[ Neighborhood )
A A
- / Local YEgonetY Recurswe \

15| ] 1 1 2 o 1 o o o ] o 8 1 1 1 1 1

Nodes

= Recursive features proved effective in transfer

learning, identity resolution
(yet to be studied for anomaly detection)

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 43




Sun et al. ‘o5

‘ Anomalies in Bipartite Graphs

= Problem:
Q1. Neighborhood formation (NF)

. . V1 V2
o Given a query node g in V,, &
what are the relevance scores |- <§;;0 25
of all the nodesinVv,toa? g’;;4<jb 2
/) 05
- 05 T |
Q2. Anomaly detection (AD) N g//;o
o Gilven a query node g in V,, 002 3 0
what are the normality scores ~ a|a4—

for nodes in V/, that link to a ?

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) SU”T'_CDM_,% o 44
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‘ Applications of problem settlng

= Publication network
o (similar) authors vs. (unusual) papers

= P2P network
o (similar) users vs. (“cross-border”) files

= Financial trading network
o (similar) stocks vs. (cross-sector) traders

= Collaborative filtering 2
o (similar) users vs. (“cross-border”) products

Sun+ICDM’05 45
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‘ 1) Neighborhood formation

Vi1
= Main idea: 3 Q\;O
o Random-Walk-with Restart from g 2 ij%

o Steady-state V1 prob.s as relevance a,;‘2<<%
/b
. Q/
o (1) Construct transition matrix P 05 8 7——10
l—c___ if (a,b) € E 0L @
P(a,b) :{ outdeg(ay T (@:0) € 002 §3 o
0 If(a,b){éE 01‘//
o (2) Fly-back prob. cto g =
o (3) Solve for steady state
q(t+1) P _,(t) cd
(1-c)
Approx: RWR on graph partition containing g
L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) Sun+ICDM'05 46
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‘ 2) Anomaly detection

= Main idea:
o Pairwise “normality” scores of neighbors(t)
o Function of (e.g. avg) pair-wise scores ¢ &

o ¢
2 (1) Find set S of nodes connected to t M%
0 (2) Compute |S|x|S| normality matrix R

= asymmetric, diagonal reset to O S

( 0%22
5 (3) Apply score function f(R) < "
= e.g. f(R) =mean(R)

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) SU”T'_CDM_,% o 47
modified with permission




‘ Experiment

B geruine
= 3 real datasets S 0% B rjcred |
o DBLP conf-auth B %
0 DBLP auth-paper £ °*
o IMDB movie-actor g o
2 e
= Randomly inject 100 CEE

nodes, each with k (avg. degree) edges
(biased towards high-degree nodes)

= No qualitative results

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 48



Tong et al. 12

‘ Graph Anomalies by NNrMF

= Low-rank adjacency matrix factorization of a
(sparse) graph reveals communities and anomalies
Low-rank matrices Residual matrix

I _—
Graph = Adj. Matrix A —p A @ AR

| community' ¥nomalies

) Conference
\ 1100
I
‘ z 111,010
E 1 1 0 0 — G: Conf. Group
4 I ERERE
F AY - “
/ Y -
\ K 0101 1 W F: author group
‘ OO0 1 1
Author  Conference Adjacency matrix: A R: abnormal connection
L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) Tong+SDM"11 49
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Non-negativity constraints

= For improved interpretability

= A Typical Procedure: _ Interpretation by Non-negativi
yP community P Y gatvty

Adjacency N Non-negative Matrix Factorization
Graph — “Matrix 4~ A= ’@ F>=0; G>=0
(for community detection)

anomalies

= An Example

. Conference Non-negative Residual
Matrix Factorization

R(j)>= 0, for A(3j) > 0

N N N I =1E=)
|

p O 0O =~

(for anomaly detection)
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‘ Optimization formulation

argming ¢ > (A(L)) —F(i,)G(, )
1,7, A(i,7)>0

S.1. forall A(i,7) > 0:

F(i,))G(: j) < A(i, )

Common in
Matrix Factorization

Non-negative
residual

= Q: How to find ‘optimal’ F and G?
o D1: Quality <> C1: objective non-convex
o D2: Scalability €<-> C2: large graph size
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k)

. . . b
‘ Optimization: batch details
= Basic Idea 1: Alternating

argming ¢ » (A(i.j) — F(i,:)G(:. )

Not convex w.r.t. F and G, jointly
But convex if fixing either F or G

= Basic ldea 2: Separation
argming Y (A(i.j) - F(i.)G(..j))® argming > (A(i)) = F(i.)G(. )

ij, A(i.5)>0 dy A(ig)>0

S for all A(i,j) >0 s.t.. forall A(i,j) >0:
F(i,:)G(:,j) < A(i. §) m F(i,)G(:, j) < A(i,])
/

Standard Quadratic Programming

Overall Complexity: Polynomial
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‘ Optimization: incremental

m Basic Idea 0: Recursive
= Basic Idea 1: Alternating

argming , Z (A(i.7) — f(i)g(4))? Initialize: R=A
i,j, A(i,7)>0

Rank-1 Approximation

‘ Update Residual

Matrix R

= Basic ldea 2: Separation

QP for a single variable
w/ boundary constrains N\

argmin, Z (A(i,5) — £(i)g())?

Solved in K

H I, (133)}0
constant time s.L. forall A(i,j) > 0 : Output Final
f(i)g(7) < A(i,7) Residual Matri

Overall Complexity: Linear wrt # of edges
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Experiments

= NNrMF can spot 4 types of anomalies

L3 1 L] 0 0 O 0 0

FRiiiy -

Tiims] 20 20 20 20 20

1e 1k

SR o o e o m .

TRTIY, i1 1

Wik 60 60 60 fs « 60 601 .
£ 11t i HE L i
ol 80 80 80 EE 80 30

L l!!E%

i fi=fisi mr T o=l 100 100 - 100 ks === e o 100 100b—— .
0 20 40 60 80 0 20 40 60 8 0 20 40 60 80 0 20 40 60 80 0 20 40 60 &0 D 20 40 60 &0
Original Adjacency Matrix nmmf SVD Original Adjacency Matrix nrmt SVD

(a) strange connection (b) port scanning
° ° TEEEnEEn °
20 20 20§ 3 BTN 20 20
e
i §i -
40 40 4[}; o7 ol :l“‘h!‘:'ilrlih;)lﬂlll‘ 40 40 )
3} of BIAAEER R L
O 1 A
80 80 80 G §i iy Hiems 80 80
v ol HIZH el ER=cEREE
G I R S

100 ke meem e A T 100 100 b s s rar 100 100
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 &0 0 20 40 €0 80 0 20 40 60 80
Original Adjacency Matrix nrmif SVD Original Adjacency Matrix nrmf SVD

(¢) ddTos T (d) bipartite core
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‘ Experiments
= 4 real datasets, with injected anomalies

Effectiveness Efficiency
Accuracy Wall-clock Time
" ‘EIMOVIEILENS [ ‘IMIT—D‘PI |N|ES—PW|:|C|KM—§A‘ 80 1 '
—_— r=
T | =2 |%~
.I. 60| —+— r=5 rank
08r -I- | —=—r=10
3 —S—r=20
3 06f I 40+
04f +1
207 N
02r , .D-E'_‘_'_"_Ef———--“""______,_
strange connection port scan ddos bipartie core D 2}{1 DAE 4)(1 Oh5 5}(1 OAE
Anomaly Type # of edges
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Ding et al. "12
Intrusion as (Anti)social Communication

Lyberterrorism

= Problem:
Q. How to detect malicious
attacks in computer networks?

= Main insight for intrusion:
o entering a community to which one doesn’t belong

o look for communication that does not respect
community boundaries ®o
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‘ Problem formulation

= Network representation as a bipartite graph

Source IPs — 10) 1) |2 |30 9 |2 a8y |6y S

Q. E

Dest. IPs — = b @

o Source and destination IPs may overlap

= One mode projection Ge: connect two source IPs
with at least 1 common neighbor

= Alternative Gw: weighby 1 e

correlation coefficient 10 B /xf 9 4
L7 S \./ \\"\\ ///\\\
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Intrusion data with ground truth

= Data: netflow traffic
o from a large European ISP

o 2 weeks data in 2007: source |IP, dest IP,
start/end time, number of bytes/packets sent

o Ground truth: traffic sources that attempted an
Intrusion as recorded by Dshield*
= known IPs sending malicious or unwanted traffic

* http://www.dshield.org/ ™ ™ ™~
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Detection methods

= Community detection: Standard community
detection methods fail to distinguish known IPs

from communities Size of Cluster

# of Clusters

# {!If DShields

6784
986

8 to 243
<7

m Cut-vertices:

I
I
10
56

158
1
0
2

Total

lteratively remove cut-vertices

68

161

0 6.6% of cut-vertices are Dshields (randomization
yields significance; (1-2.2%) at 0.05)

-> Clustering and betweenness deemed discriminative
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‘ Experiments

= Malicious If clustering/betweenness below/above
threshold

for a given threshold ' Mean(AUC) [ SE(AUC) |
1 o T == Clustering on Gp 0.7440 0.0103
@ oo i 1 Betweenness on Gp 0.7180 0.0084
=R ;A | Clustering on Gy 0.7625 0.0080
© ° : ) Betweenness on Gy 0.5621 0.0034
o ol J/
q>) 0.6 ]
S osl = Clustering gives better
O — discrimination
oak usteringon G, | .
O .l —evemesson, | @ Gw does not provide much
- S == Clustering on G, .
= Betweenness on G, Improvement over Gp

0 0.2 0.4 0.6 0.8 1

False Positive Rate
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Community mining fFeature mining

Part I: References (plain graphs)

= L. Akoglu, M. McGlohon, C. Faloutsos. OddBall: Spotting

Anomalies in Weighted Graphs. PAKDD, 2010.

K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad,
H. Tong, C. Faloutsos. It's Who You Know: Graph Mining
Using Recursive Structural Features. KDD, 2011.

J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos.
Neighborhood formation and anomaly detection in bipartite

graphs. ICDM, 2005.

Hanghang Tong, Ching-Yung Lin:_Non-Negative Residual
Matrix Factorization with Application to Graph Anomaly

Detection. SDM, pages 143-153, 2011.

Q. Ding, N. Katenka, P. Barford, E. Kolaczyk, and M.
Crovella. Intrusion as (Anti)social Communication:
Characterization and Detection. KDD, 2012.
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http://www.cs.bu.edu/faculty/crovella/paper-archive/kdd12-antisocial.pdf

‘ Part I: Outline

= Overview: Outliers in clouds of points

o Outliers in numerical data points
= distance-based, density-based, ...

o Outliers in categorical data points
= model-based

= Anomaly detection in graph data
2 Anomalies in unlabeled, plain graphs

»Anomalies In node-/edge-labeled, attributed
graphs
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Taxonomy

Graph Anomaly Detection

\4

A 4

\ 4

Static graphs Dynamic graphs Graph algorithms

A\ 4

A 4

v Plain v v
Plain Attributed Learning Inference
' models

| Distance based lterative
_ classification
Feature based Structure based Feature-distance RMNs Belief
Structure distance PRMs propagation

Structural features Substructures RDNs
: Relational netw.
Recursive features | | Subgraphs MLNsS classification

Structure based
“‘phase transition”

Community Community
based based

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) 63



Noble&Coqmlf. ‘03
' Anomalies in labeled graphs -

m Problem:

Q1. Given a graph in which nodes and edges
contain (non-unique) labels, what are
unusual substructures?

Q2. Given a set of subgraphs, what are the
unusual subgraphs?

Note: assumption is anomalies are connected
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‘ Background
N *. An algorithm for detecting repetitive
patterns (substructures) within graphs.

= Substructure: A connected subgraph of the
overall graph.

= Compressing a graph: Replacing each
iInstance of the substructure with a new
vertex representing that substructure.

= Description Length (DL): Number of bits
needed to encode a piece of data

* http://ailab.wsu.edu/subdue/
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‘ Background

m uses the following heuristic:

o The best substructure is the one that minimizes
F1(S,G) =DL(G | S) + DL(S)

= G: Entire graph, S: The substructure,
= DL(G|S) is the DL of G after compressing it using S,
= DL(S) is the description length of the substructure.

= lterations after compressing at each step

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12)
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‘ Background

Given database D and set of models
for D, Minimum Description Length .

selects model M that minimizes

L (D

M)

J

LM), +

length in bits: length In

Y

description of encoded by M
model M
U U
aX+a, deltas
VS.
agx’+...ta;x+a, {}

nIts: data,

or

Bishop: PR&ML

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (ICDM'12)
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‘ 1) Anomalous Substructures

= Main idea: anomalies (by def.) occur infrequently,
they are roughly opposite to "best substructures”

o Find substructures S that maximize F1(S,G)?
= Nope, it flags all single nodes as anomalies!

o Instead, find those that minimize
F2(S, G) = Size(S) * Instances(S,G)
= Approximate inverse of F1(S,G)

= [ntuition: Larger substructures are expected to
occur few times; the smaller the
substructure, the less likely it is rare
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‘ Example
m F2(S, G) = Size(S) * Instances(S,G)
a FornodeD,F2=1*1=1
a0 ForA>Cand D2A,itis2*1=2
o For G (whole graph), itis9*1=9
= Hence D is considered the most anomalous.

C B ﬁ@ B C

N N

= Note: Usually a threshold for F2 is used and anomalies
are ranked by their scores.
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‘ 2) Anomalous Subgraphs

= Main idea: subgraphs containing few common
substructures are generally more anomalous

o Define compressibility score A in [0,1]

I o
A= 1——2(71—14—1) *C
noo5 AN =
fast drop off in
early iterations

# Subdue™
iterations

fraction compressed

at ith iteration

DL, ,(G)=DL.(G)
DL,(G)
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‘ Experiments
= Data: 1999 KDD Cup Network Intrusion é

o Ground truth: connection records, “normal” or
attack (37 types), 41 features of connection
(duration, protocol type, number of bytes, etc.)

o Each individual test involved 50 records of which
only one iIs of a particular attack type.

= Use Subdue to find anomalous substructures
o Prune all subgraphs with size>3, F2>6 (arbitrary)

L. Akoglu & C. Faloutsos Anomaly detection in graph data (ICDM'12) /1



‘ Performance

25

20

15

10
LOWGr 5
o = = @® @®
- X E o Q= Yo = 05 O T = = c © o o = W W oo e o © o T 2x
S S5 888 Esc 58828582 5E s BBEEL s EE¢E¢€828
E=SE 2= 2 u:uc.olE o 5 =2 mw 9o w L 5 @ E © = T & =] S = S 8
E=x535524°83°8 28T 3%%gy E£E8%2FF2S8 AE°E
= 38 8 X 3 9 3 £ o = N B = = w2 o o
= 3 (=3 © s @ 2 = hd @D
w 2 = o © 1S
171 @ @ j=] o
g =] = =
v > =1

= Note: Degree of anomaly D(S): 1/F2

o Attack accounts for D(S1) / (Sum [D(Si)]

o eg.,ifF2=(2,3,4) for (S1, S2, S3) and S2 occurs in the attack,
then attack accounts for (1/3)/(1/2 + 1/3 + 1/4) = 4/13 of
discovered anomalies
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Davis et al. '11

‘ Anomalies with numeric labels =

= How about numeric labels?
o Noble & Cook work with categorical labels

(1) unusual substructures

(/;;4\| G\;\) /e.:rq
| "
el el e,
o
. Q .
: <D
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‘ Anomalies with numeric labels

= How about numeric labels?
o Noble & Cook work with categorical labels

(2) unusual subgraphs

Structural Anomalies
(D
type e
(iii)
@ 0816

aaaaa location

@ o8 O

(iv)
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‘ Anomalies with numeric labels

= Main idea (discretization):
0 assign categoric label g, to "normal” values, and
0 “outlierness” score (; to all others |

» Example: empirical distribution of a label

60

40

2l

0
0 100 200 300 400 500 600 700 600 300

= Several “outlierness” scores (pdi-fitting, kNN,
LOF, clustering-based)
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Discretization :

40

s Model fitting (GMM) 2”

0
0 100 200 300 400 500 600 700 800 900

1

o g if1— P(t:) <
%=1 1-P(t;) otherwise

06

':|4 1 1 | 1 I 1 1 | |
0 100 200 300 400 500 B00 700 G 8000

m KNN distance

100
|

L qo if k-distance(t;) ~ 0
4 = k-distance(t;) otherwise

1] 100 200 300 400 200 &E00 ro0 goa 300
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D T VR o
Discretization jj H AR
= Density outlier score (LOF) Sl
o qo if LOF( 1,;) ~ 1 Breunig et al. ‘oo
1 = LOF(t;) otherwise

g

normal—

D 1 1 L 1 1 1 1 1
0 100 200 300 400 200 600 700 800 300

= Cluster based (CbLOF)

E

,| He etaI ‘03
/ qo if CBLOF(t;) <
2\/ CBLOF (t;) otherwise
30 BUU HDU

D

0 4 EDD ?

distance to closest “large” (k-means) cluster centroid
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Discretization

= Other possible discretization techniques

0 SAX (Symbolic Aggregate approXimation)
= http://www.cs.ucr.edu/~eamonn/SAX.htm
o MDL-binning

= P. Kontkanen and P. Myllyméki. MDL histogram
density estimation. In AISTAT, 2007.

o Minimum entropy discretization

= U.M. Fayyad and K.B. Irani. Multi-interval discretization
of continuous-valued attributes for classification
learning. In Proc. IJCAI, pages 800-805, 1989.

o Logarithmic binning
= especially for skewed distributions
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‘ Experiment

= Data: Access card transaction graphs

o nhode: door sensor, edge (u,w). movement u->w,
weight(u,w): time u->w (only numeric attribute)

1800
% 1 Equal freq.
‘S 1400 (b:10)
% 1200+ .
SUZ') 1000+ Equal width il CbLOF
o (b=10) Y/ (k=10)
-+ 800~ ;
e K-NN dist. ’
k=10 ; Subdue
A0 ( ) . .
" (numeric feat. ignored)
200+ =
0, e o peeememommemamememenn e et
0.9 0.8 07 0.6 05 04
* arbltrary K, b anomaly score . _normal
: 79
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Eberle and HOIde,”':.' ‘o7
‘ Anomalies in labeled graphs

m Problem:

Q1. Given a graph in which nodes and edges
contain (non-unigque) labels, how to find
substructures that are very similar to, though
not the same as, a normative substructure?
("best substructure” as for Subdue)*

m |ntuition:

“The more successful money-laundering
apparatus is in imitating the patterns and
behavior of legitimate transactions, the less
the likelihood of it being exposed.”

— United Nations Office on Drugs and Crime
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‘ Formal definition

= Given graph G with a normative substructure S,
a substructure S’ iIs anomalous if difference d
between S and S’ satisfies 0 < d <= X, where X
IS a (user-defined) threshold and d is a measure
of the unexpected structural difference.

m Assumptions

o Majority of G consists of a normative pattern, and
no more than X% of it is altered in an anomaly.

o Anomalies consist of one or more modifications,
Insertions or deletions.

o Normative pattern is connected.
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‘ Three Types of Anomalies

1) GBAD-MDL (Minimum Descriptive Length):
anomalous modifications

2) GBAD-P (Probability): anomalous insertions

3) GBAD-MPS (Maximum Partial Substructure):
anomalous deletions

Note: prone to miss more than one type of anomaly
o e.g., a deletion followed by modification
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‘ 1) Information Theoretic Approach

= FIind normative substructure S that minimizes
F(S,G) =DL(G | S) + DL(S)
= For each instance I, of S
anomalyScore(/;) = freq(/;) * matchqgst(]k,S_)

cost to modify I, into S
s Example:
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2) Probabilistic Approach

~ind normative substructure S
~ind extensions to S with lowest probability
~or each extension I, of S

number of instances of /;

anomalyScore(/;) =

all instances 7, with a unique extension

Example:

c o & o o

© 06 06 0O 06 06 0

e o o o e e e e e
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‘ 3) Maximum Partial Substructure Approach

= FInd normative substructure S

= Find “ancestral” substructures S, < S that are
missing various edges and vertices.

» For each instance |, of S,
anomalyScore(/;) = | I, | * matchcost(Z;,S)
# Instances of Ik/
s Example:
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= Data: obtained from Customs
and Borders Protection (CBP)

m Scenario:

o Marijuana seized at Florida port [press release by U.S.
Customs Service, 2000].

o Smuggler did not disclose some financial information,
and ship traversed extra port.

o GBAD-P discovers the extra traversed port;
o GBAD-MPS discovers the missing financial info.
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‘ Experiments (Network intrusio

m Data: 1999 KDD Cup Network Intrusion
o 100% of attacks were discovered with GBAD-MDL
0 55.8% for GBAD-P and 47.8% for GBAD-MPS

Note
= Data consists of TCP packets that have fixed size

= Thus, the inclusion of additional structure, or the removal
of structure, is not relevant here.

= Modification is the only relevant one, at which GBAD-MDL
performs well

o High (unreported) false positive rate!
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Gaoetal. 10

‘ Community Outliers

= Definition

o Two Information sources: links, node features
o Communities based on both links and node features

o Objects with features deviating from other community
members defined as community outliers
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‘ Other network outliers

------------------------------------------------------------------------------

1) Global outlier: i @) Global Outier 5
only considers §I ) @ &
{10 70 "

node features 30 40 100 110 140 160
Salary (in $1000)

L L L L L L L L L L T L L X X X T Y L L L L L

structural outlier

2) Structural outlier: ...
only consider links |

3) Local outlier:
only consider the
feature values of
direct neighbors
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e v community
.~ label Z
{0, 1, ..., K}

node
features |

'I- -I--I-Il--i-lllnll-‘.-lq:l-l- --IE - E .‘...II'Ii'll'll'I'I'I'Iql-'l-I.I.II.+...II.I.;“...I. q -Il--l-.-lli-‘l-llll

I|nk structure

00000 O ®®H W

K 140K TIK 100K 160K 110K 30K 10K K 30K

Observed Data

© = (01,...,0K) model

K: number of parameters
communities X's are
(user input) drawn from
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details"&’

‘ Optimization formulation
= Maximize P(X) oc P(X|Z) P(2)

o P(X|Z) depends on community label and model param.s

= e.g., salaries in the high or low-income communities follow
Gaussian distributions defined by mean and std

P(xi = silzi = k) = P(x; = s:|0k) | )

P(e: = silz = 0) — Normal with{ ¢k, 0, }
e = siE = 0= PO Uniform for outliers

o P(Z) is higher if neighboring nodes from normal
communities share the same community label
= e.g., two linked nodes are likely to be in the same community
= outliers are isolated—does not depend on the labels of neighbors

P(Z) oC Z U;’.-.gj(S(Z@: — Zj)

u.-'?jj >O,Z?j }LOZJ #0
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Algorithm

® : model parameters
Z . community labels

Initialize Z
Fix Z, find © Parameter
that maximizes P(X|Z2) estimation
Fix ®, find Z
that maximizes P(Z|X) = |Inference
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‘ Algorithm: parameter estimation

= Calculate model parameters ©®
2 maximum likelihood estimation
= Continuous: {u, o3}
o mean: sample mean of the community
o std: square root of sample variance of community

high-income:

mean: 116k
std: 35k

low-income:
mean: 20k
std: 12k

000005 © ©

_ 4K 140K 70K 100K 160K 110K 30K 10K K 30K |

Observed Data
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‘ Algorithm: Inference

= Calculate label assignments Z igh-incomey Aow-income:
mean: 116k mean: 20k
2 Model parameters are known std: 35k std: 12k

o lteratively update the community labels of nodes
o For each node: select label that maximizes:

P(zi|lxi = si, 2114y ) o P(x; = ()\ Z w;ii0(zi—zj) )
/ | \
high-income:  P(salary=100k]|high-income) P(high—incomelneighbors)
low-income: P(salary=100k|low-income) P(low-income|neighbors)
outlier: constant high-
100k

low-
income
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‘ Experiments: Simulations

s Data

o Generate continuous data based on Gaussian
distributions and generate labels according to the
model

o r: percentage of outliers, K: number of communities

s Baseline models

Q0 . global outlier detection (based on node
features only)

o DNODA: local outlier detection (check the feature
values of direct neighbors)

Q . partition data into communities based on links
and then conduct outlier detection in each community
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‘ Experiments: Simulations

0.8 -Preciston

-

E GLODA
E DNODA
OCNA

m CODA

r=1% K=5 r=5% K=5 r=1% K=8 r=5% K=8
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‘ Case study on DBLP

= Conferences graph
o Links: % common authors among two
o Node features: publication titles in the conference

= Communities:
e Database: ICDE, VLDB, SIGMOD, PODS. EDBT

e Artificial Intelligence: IJCAI, AAAI, ICML, ECML
e Data Mining: KDD, PAKDD, ICDM, PKDD. SDM

e Information Analysis: SIGIR, WWW, ECIR, WSDM

= Community outliers: CVPR and CIKM
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Akoglu et al. '12
Cohesive groups in attributed graphs

m Problem:

Given a graph with node attributes (features)
o social networks + user interests
a phone call networks + customer demographics
o gene interaction networks + gene expression info

Find cohesive clusters, bridges, anomalies

Note: cohesive cluster: similar connectivity & attributes
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‘ Problem sketch

People

(Binary) Feature
People Features People Groups Groups
1 2 3 4 5 A1 A A
L familiar S :
100 e traditional
strangers _/} | 00
200 8.!00 7 ;Iusters | 8_ N
300 2 . >
o ) 00
400 e - A= 00
O O
500 100 | 00
600 i') 00 2 00
700 8'-00 B 2 o "
800 & 0 bipartite-core & 00
900 5 2 H00- 160':206” 300 400 500 60D 700 800 800 005 50 10.0. 150
200 400 600 800 50 100 150 Node Groups Feature Groups

Nodes Features

Given adjacency matrix A and feature matrix F
Find homogeneous blocks (clusters) in A and F
* parameter-free
* scalable
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‘ Problem formulation

1.How many node- & attribute-clusters?
2. How to assign nodes and attributes to clusters?

Main idea: employ Minimum Description Length

L I\/I + L D M - 14—'—&%“"3[ : tr: itionsa

v ( ) Y] v ( | ) y ) o stranger;( cluiters '
Y Y -

encoding length  encoding length -

of clustering of blocks - L

Clustering Compression
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Al
'Problem formulation

= L (M) : Model description cost

1. log* n + log* f n: #nodes, f: #attributes

2. log* k + log* k: #node-clusters, |: #attribute-clusters
3. nH(P) + fH(Q) r; <. Size of node-cluster i
Pi = T . .
Pi= """ size of attribute-cluster j
_ C; &«
4 = F

= L(D|M): Data description cost given Model
1. Foreach blockin A and F, #1s:log* nq(DB;;)

2 L/iD N o (D Nl (T (1)) o (D NN (T (NN

A similar problem (column re-ordering for minimum
total run length) is shown to be NP-hard [Johnson+].
(reduction from Hamiltonian Path)

.—--------------------
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Nods Groups
@ N oM WM B W N o
8 8 8 B 8 B 8B

™ Noce Growe
(a) k=1 1=2
Split-FeatureGroup

The algorithm is iterative and monotonic
—will converge to local optimum
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'PICS at work (Political books)

Examples of “core” liberal and conservative books
Liberal

and the Lying @W’ho Tell Them: A(Fair)and
&Look at the Right
—Big The CIW ropaganda Machine and
How It Distorts th

George W. Busl

—Th
—Dude, Where's My Country?

Conservative
—Persecution: How@qm Waging War Against
Christianity

—Deliver Us from Defeating Terrorism, Despo-

tism. and Liberalism

from the Coast

—A National Party No More

Examples of bridging ‘conservative’ books

=Bush at War
—“The Bushes: Portrait of a Dynasty

~ Rise of the Vulcans: The History of Bush’s War Cabinet
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'PICS at work (Reality mining)

/ call-center

',casuaii-

[7)]
a !
540 |r.
O F--—-------l--xz-=F-°
o 50 g i
- g
60 -
< B

o L bUS|hess , |

2 _i G sof
. 0]

’ . A $ 60}
| P rad op
80'_..'.-_:..F;r-'éj 80-_

oo B |

]

20}

O 40

Lm l . -
20 40 60 80

Subjects

Phone calls

ode Groups

Z M L] -m

Subjects
Device scans
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'PICS at work (YouTube)

1l Yoni ' i : ¥ -
famlllar Stra ngerus ' l‘lgEI’S?nl eu\irls ri ge'pi/ﬂlj?‘lu 1¢ @iluu iers' porg m sic anlrggnesal interest
' soe) T [ o | ALY S

S

anime lovers

» animne
| -
& users' 5 LN SR o RN
5 @
7]
g >S5
— 2 4
S'hri
3 bridge %
o
>

b

'outliers - =al
1 z 3 ) 3 a] 7 ) 1 2 3

YouTube users YouTube “
groups

Ealll

/7K users
30K groups
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Part I: References (attribute graphs
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X
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‘ Tutorial Outl

Ine

m Motivation, applications, challenges

m Part |; Anoma

y detection in static data

o Overview: Out

lers in clouds of points

o Anomaly detection in graph data

mpPart II: Event detection in dynamic data
o Overview: Change detection in time series

o Event detectio

nin graph sequences

= Part Ill: Graph-based algorithms and apps
o Algorithms: relational learning

o Applications: f

raud and spam detection
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Coffee break...




